The Data

Radar data have the power to do more than measure ice thickness, as the physics of EM wave propagation and reception are sensitive to electrical properties that co-vary with glaciologically interesting properties of the system (e.g., temperature and water content). With several unknowns controlling reflection power, clever survey design must be used to properly constrain the properties of interest. In this study, we present two of the first common midpoint (CMP) radar sounding experiments conducted through thick ice, and attempt to constrain both the ice conductivity and (through that) temperature profile of the ice column. Data were collected with a ground-based, 3 MHz radar system.

We know radar reflection power is controlled by the geometry of the system, the characteristics of the antennas, and the electrical properties of the ice and reflector. For common-offset data, many of these properties are unchanging from trace to trace, allowing us to attribute all variability in returned power to the englacial attenuation and reflector heterogeneity. However, common-offset data lack sufficient information to disentangle these two contributions, and therefore cannot uniquely identify the ice and substrate properties. Common-midpoint radar data theoretically allow us to separate effects from ice and interface properties, but require accounting for the full complexity of the radar equation.

The Controls

Birefringence [B(θ)] - Ice is an anisotropic medium, which can drive changes in the polarization of EM waves during propagation. Previous work has shown, that for frequencies below 20 MHz, the effect on return power is negligible, so we ignore it here.

Fresnel Reflection Characteristics [R(θ,ϕ)] - The reflection coefficient defining dielectric contrasts in the subsurface depends on the incidence angle of the traveling wave. Uncertainty in that angular dependence (not the actual magnitude of the reflection coefficient) will bias the inferred attenuation rates. Over the range of reasonable englacial reflector permittivity contrasts (10^-5 - 10^-2), the uncertainty in the angular dependence is small, making power correction possible.

Net Wave-Spreading Effect [S(θ,ϕ)] - Spherical spreading corrections are commonly applied to account for changes in energy density as the area of the radar wave-front grows with distance. But in the presence of a reflector subsurface depends on the incidence angle of the traveling wave. Uncertainty in that angular dependence (not the actual magnitude of the reflection coefficient) will bias the inferred attenuation rates. Over the range of reasonable englacial reflector permittivity contrasts (10^-5 - 10^-2), the uncertainty in the angular dependence is small, making power correction possible.

The Results

Individual reflectors were picked, their reflection power was corrected for the biases described above (plotted in A,C), and the attenuation rates were computed (B,D). Full-column, depth averaged attenuation rates were also computed using common-offset methods, and provided as histograms in (A,C).

Attenuation rates computed using common-offset methods fell far below those computed using CMP methods, which consistently produced results outside of the reasonable range.

The Complication

As shown in the conductivity log to the left, measured from the NEEM Ice Core, englacial reflections from unique dielectric layers are far thinner than the radar wavelength (~68m). As a result, the reflection strength is dictated by the interferences of many sub-wavelength layers. When we model synthetic CMPs (figures to the right), we find that the effective layer thinning that results from the hyperbolic move-out for englacial layers results in enhanced destructive interference, on average reducing returned power with increasing transmission angle.

The Conclusion

Englacial reflections result from the integrated effect of many sub-wavelength interfaces. The packet of interfaces over which the radio wave integrates changes depending on the source-receiver offset, leading to an unaccounted for source of power variability that cannot be removed from the signal.

Acknowledgments

Funding for this project was provided by the National Science Foundation and the Center for Remote Sensing of Ice Sheets (grants 0424589 and DGE-0255302) with additional funding from NASA for N. Holschuh and K. Christianson (grant NNX06AM01G). We would like to thank the field teams who collected this data. Those teams include Leo Peters, Atsuhiro Muto, Kiya Riverman, Rickard Peterson, and Brian Welch. We would also like to thank St. Olaf College, for the use of their radar system during data collection.